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Abstract

Particle physics models with pseudo-Nambu-Goldstone bosons (PNGBs) are characterized

by two mass scales: a global spontaneous symmetry breaking scale f and a soft (explicit)

symmetry breaking scale A. We investigate general model-insensitive constraints on this

two-dimensional parameter space arising from the cosmological and astrophysical effects

of PNGBs. In particular, we study constraints arising from vacuum misalignment and

thermal production of PNGBs, topological defects, and the cosmological effects of PNGB

decay products, as well as astrophysical constraints from stellar PNGB emission. Bounds

on the Peccei-Quinn axion scale, 101° GeV < fpQ _ 1010 - 1012 GeV, emerge as a special

case, where the soft breaking scale is fixed at AQCD _'2 100 MeV.
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I. Introduction

Particle physics models with spontaneously broken global symmetries are quite com-

mon; by Goldstone's theorem, the spectrum of such theories must contain a massless

spin-0 boson for each broken symmetry group generator. If the global symmetry is only

approximate, i.e., it is explicitly (in addition to being spontaneously) broken, the associ-

ated bosons become massive pseudo-Nambu-Goldstone bosons (PNGBs). In nature, the

best known exaanple of this phenomenon is the Tr meson, associated with chiral symmetry

breaking. Particle theory provides a host of additional PNGB candidates, 1 including ax-

ions, majorons, familons, and schizons (although the majoron and familon may be exactly

massless Nambu-Goldstone bosons).

Such models are generally characterized by two mass scales: the spontaneous symmetry

breaking scale f, and an explicit breaking scale A. The simplest example is that of a

complex scalar • with a potential V(¢*¢) which is minimized at • = fe i¢/I. The non-zero

vacuum expectation value of • spontaneously breaks the global U(1) symmetry _ --_ Oe ia

at the scale f, and the angular field ¢ is the massless Nambu-Goldstone mode around the

bottom of the 'Mexican hat' potential. At the lower scale A, a periodic potential for ¢

of height ,,, A 4 is generated. (The form of the potential may reflect a residual discrete

symmetry.) The resulting PNGB has a mass given by me _ A2/f. In models with a

large hierarchy between the scales f and A (f >> A), PNGBs are thus very light and

also very weakly interacting, since their couplings are suppressed by inverse powers of f.

Nevertheless, they can play an important role in astrophysics and cosmology. For example,

in axion models, where f is the Peccei-Quinn scale fpQ and the symmetry is explicitly

broken by QCD instantons (through the chiral anomaly) at the chiral symmetry breaking

scale AQCD -_ 100 MeV, cosmological 2 and astrophysical 3 arguments constrain fpQ to lie

in a narrow window around fpQ _- 10 l° GeV (perhaps extending up to 1012 GeV, although

this point is controversial; see below).

Although motivated by the strong CP problem, the QCD axion is a particular instance

of a more general phenomenon. For example, Hill and Ross 4 have explored schizon models,

in which A is associated with the mass of a light fermion (quark or lepton), and might

plausibly lie in the eV (for neutrinos) to MeV (for charged leptons or quarks) range.

On the other hand, superstring models contain one or more veryheavy axion fields; for

example, for the model-independent axion 5 (the imaginary counterpart to the dilaton), A

is associated with the scale at which the gauge coupling in the hidden sector group becomes

large. This naturally happens at a very high energy scale, 6 A ,,, 1014 - 101T GeV. (Indeed,

it has been suggested that a PNGB with f ,,, mpl and A --, 1015 GeV is a natural candidate

for the inflaton field. T)
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The lessonwe draw from this is that there axea number of models with axions or

axion-like particles in which the scaleA has no connectionwith the QCD scale; indeed,
from abovewe seethat it may vary from the atomic to the Planck scale. We axe thus led

to consider the more general phenomenon of PNGB models in which both f and A axe

a priori unconstrained. In this paper, we investigate the cosmological and astrophysical

constraints on this two-dimensional parameter space. These bounds have previously been

studied in detail for the QCD axion with fixed A = AQCD; here, we explore how these

constraints axe altered when the scale A is allowed to vary over a wide range. In Sec. II, we

discuss PNGB production from initial vacuum angle misalignment and the bound which

results from requiring that the PNGB density satisfy _lch 2 _< 1. In Sec. III, we consider

PNGB production from topological defects (strings, textures, and global monopoles) and,

more generally, from long wavelength spatial gradients arising from the finite correlation

length of the scalar field. We consider thermal production of PNGBs in Sec. IV. In Sec. V,

we study a new wrinkle in PNGB phenomenology not present in 'invisible' axion models:

if they axe sufficiently massive, PNGBs decay on a timescale shorter than the age of the

Universe; we examine the concomitant constraints on their decay products. In Sec. VI, we

discuss astrophysical bounds arising from PNGB emission from red giants and supernova

1987a, and we conclude in Sec. VII. In all cases, the bounds we obtain axe relatively model-

insensitive: aside from order unity couplings, the form of the PNGB interactions are fixed

by symmetry, so they axe not strongly model-dependent.

Here, we briefly define some notation. In general, the PNGB ¢ will be taken to have

a (low-temperature) mass given by

A z (101Z?eVrn_-- f -10 -SeV ( A zIOOMeV ) )" (1.1)

Eqn.(1.1) may be thought of as defining the scale A in terms of the PNGB mass and f.

In general, the PNGB field is related to an angular parameter of the broken symmetry,

¢ = fS, where 8 runs from 0 to 27r: we have absorbed any "winding" of the field into ].

II. Non-Thermal Misalignment Production

At high temperatures (T >> A), the angular degree of freedom representing the PNGB

is randomly oriented. As the universe cools below a critical temperature T1, the ¢ field

will roll to the minimum of its potential and will begin to oscillate coherently, resulting in

a Bose condensate that can be treated as a classical field configuration.

Expanded about the minimum of the potential, the Lagrangian density of the PNGB

can be written as
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for a spatially homogeneousfield ¢, to quadraticorder in the field. (We considerthe effects

of inhomogeneitiesin the field in the next section.) In general,the potential V(¢) will have

higher order terms, but these are comparatively small for ¢ _< f (0 _< 1); these anharmonic

effects in the potential will slightly increase the PNGB energy density s if 0 >_ 1.

We will parametrize the temperature-dependent mass of a general PNGB as

me(T) = am,_(T = 0) T _ h (2.2)

where a and ix are fitting parameters of order unity. In the case of the QCD axion,

the PNGB gains a mass at finite temperature due to QCD instantons9; in this case, the

behavior is approximately s a _ 0.1 and ix "-" 3.7. However, the form of Eq. (2.2) holds

more generally; the temperature-dependent mass in schizon models has also been discussed

recently 1°.

The classical equation of motion for ¢ is as usual for a scalar field in an expanding

spacetime (ignoring for now the decay width of ¢):

+ 3H4b + rnc(T)2¢ = 0. (2.3)

At high temperatures where me(T ) << 3H(T), ¢ = ¢1 = fiT1 is a constant and frozen to

its initial value. As the temperature decreases, the mass turns on adiabatically; the field

begins to oscillate coherently at a temperature T1 given by m¢(T_) = 3H(T1). The PNGB

energy density, averaged over an oscillation, then scales a.s

m¢(T)/R 3, (2.4)

where R(t) is the scale factor of the universe; thus the number of PNGBs per comoving

volume is conserved, rl_ = pc>/m¢(T) ex R -3. [At low temperatures, when me(T) =

me(0) = const., the PNGB energy density scales like non-relativistic matter, pc ex R -3

(T << A).] As long as the expansion of the universe is adiabatic, the entropy density s is

also proportional to R -3, so the ratio n¢/s has been constant since the onset of coherent

PNGB oscillations. If the entropy in a comoving volume has increased by a factor "l' since

the onset of PNGB oscillations, the ratio he, Is will simply be reduced by this factor. Thus

we can find the present PNGB abundance by calculating the PNGB-to-entropy ratio when

coherent oscillations begin; since p(T1) = talc(T1 )¢2/2, we have

T, ~ (2.5)
s - 2r2g.1T_145

where s = 2_r2g.T3145 is the entropy density, g.(T) counts the number of relativistic

degrees of freedom at temperature T, and the subscript 1 denotes the value at T1.



Reexpressing this in terms of the initial misalignment angle 01 and the low-temperature

mass m_, using me(T1) = 3H1 = 5gl./2T_/rnpl, appropriate for the radiation-dominated

early universe, we can calculate the present PNGB density in terms of the critical density

(defined by H02 = (8rG/3)pcrit)

_¢,mis ----

Pcrit Pcrit (2.6)
= 1.3 × 10-1°h -2 Gev-2A40_V -1

g. l rng_Tl "

Here, the present Hubble parameter is H0 = 100h km/sec/Mpc, and observations indicate

0.4 _< h _ 1; we have also used the fact that the present entropy density is so = 2970 cm -a

(for a photon temperature ]1 of 2.735K). Finally, T1 is given by me(T]) = 3H(T]); for

reference, in a radiation-dominated universe,

-1

1/2
T] ( 5g.1...___f_ _-'_ (2.7)

Substituting Eq. (2.7) into (2.6), we find

1

_¢,mi_h2=l.3×10-lo82( Af ) ( f )_+--'-_ -_GeV 2 0.2_-mpl .,/-lg.] (2.8)

This expression merits several comments. First, it retains some implicit dependence on T]

through the term in g.1; however, between T ,-_ 1 TeV and today, g. has only changed by

about two orders of magnitude, so this additional parameter does not have a substantial

effect. Second, we have assumed in Eqns. (2.6) and (2.7) that the universe is radiation-

dominated at T1. Thus, Eqn. (2.8) is only strictly valid if m s > 3H(Teq) -_ 10 -26 eV,

where T¢q is the temperature when the universe first becomes matter-dominated. Third, we

note that for the axion, the most well-studied and well-understood PNGB, there is a theo-

retical uncertainty in this value of about 8 10 =1:°'4, coming mostly from the parametrization

of the finite temperature mass; for the general case we might expect this to be larger.

Solving this for A, and assuming from here on negligible entropy production, we find

_ _-t-a

21,_. ( 01 '_--2 ( f ) _,-t-:_G-evA _ [(2.3 x 109)(2.4× i0's)_-_ 2] g_a_--_+ 2 \_'FV_] _ _'/4"mish2"

(2.9)
We can use our knowledge of the expansion and age of the universe to restrict these

parameters: since the Hubble parameter h > 0.4 and the age of the universe to > 101° yr

(from globular cluster and nucleocosmochronology dating) we have the constraint on the

cosmic density, 12 ft0h, 2 < 1. This requirement translates into an allowed region ofthe A-f
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plane, for fixed valuesof the O(1) parameters (i.e., a, u, g.1, 7,/91). We show this region

in Fig. 1.

We have chosen as a typical value of the initial misalignment angle/_1 = 7r/v/_-the

RMS value of an angle randomly distributed between -rr and r. On average, we expect

this value to hold because the present Hubble volume comprises a very large number of

regions that were causally disconnected at tl = t(T1 ), within each of which/91 was arbitrary.

However, if the universe inflated during or after the PNGB symmetry breaking (at T ,_ f)

without reheating to temperatures above the symmetry-breaking scale f, we have no way

of knowing the initial angle in our observable neighbourhood. In an inflationary scenario,

it may be possible to escape this bound entirely if 81 _- 0 in our neighbourhood of the

universe, since the observable Hubble volume would come from a single causally connected

region within which 81 was homogoneous. See refs. 13 for discussion of these issues.

Figure 1 shows that this process alone excludes a large portion of the A-f plane above

the line representing fth 2 = 1. Note the spread of 1-2 orders of magnitude by varying the

model-dependent parameters about the "axionic" case. In particular, for small values of

01, the amount of excluded parameter space is decreased rapidly since ft¢,mis ¢x 82.

We have also shown, for reference, lines of constant mass me. For the axion, located

on the horizontal line at A = AQCD -_ 100 MeV, misalignment production requires fpQ <

1013 GeV, in agreement with previous analyses 2's.

IIL PNGB Production from Symmetry Breaking

When the universe cools below T _ f and the symmetry is spontaneously broken,

global defects appropriate to the topology of the vacuum manifold will form 14. In the

simplest case (which includes axions), the relevent broken symmetry is U(1), the vacuum

manifold S 1 has non-trivial first homotopy group, 7ra(S _) = Z (the integers), and the

defects produced are global strings; we first consider this case.

At T ,-, f, the massive complex field ¢ = ae i¢/f rolls down to its minimum, I¢[ =

a = ._, anywhere around the "mexican hat," since the potential for the phase of ¢ (the

PNGB field ¢) does not have discrete minima until T -,_ A. Because the angular field ¢ is

initially uncorrelated on scales larger than the horizon, there will be closed loops in space

around which ¢ winds by 27rN, where N is an integer; by continuity, there must be some

point within each surface spanned by such a loop where the angular field is undefined.

These points are the cores of global strings, where the complex field is trapped in the

false vacuum, ¢ = 0. Due to the gradient and potential cnergy of the configuration, these

strings have an energy per unit length # __ rrf 2 ln(fd), where d is a characteristic distance

between strings. (The logarithm comes from the gradient energy in the field.)

In the absence of inflation, the global string network should, as in the case of gauge



strings, quickly reach the so-calledscalingsolution12;for long strings, the energy density
then is of order

Pstring _'_ P t-2 Pstrinft _ G#. (3.1)
Ptotal

For the scaling solution to be maintained, almost all the energy in strings must be radiated

away each Hubble time as PNGBs (this is the crucial difference between global strings and

gauge strings, which primarily decay through gravitational radiation). Thus the change in

the relative PNGB abundance over one Hubble time will be

-Jut-2 (3.2)
~ wT 3

where w is the average energy per radiated PNGB. This process will be effective from the

epoch of spontaneous symmetry breaking (T ~ f) until the time when the PNGB mass

rn¢ becomes comparable to the expansion rate H (at temperature T1 as before): the latter

epoch corresponds to the time when: (1) the strings become connected by domain walls

(at T ~ A _ T1) and rapidly chop themselves up, and (2) the strings can no longer radiate

into very low-frequency PNGB modes (since rng> ,,, H(T1) ,,, w(tl)) which, at least in the

Davis-Shellard scenario (see below), dominate PNGB production. Using the value of the

Hubble parameter appropriate to a radiation dominated universe (H ~ t -1 _,, T2/rnpl)

and integrating Eqn.(3.2) gives

n ¢ iTi dT .--s "_ # w(t)rn_l (3.3)

For global strings, there is considerable controversy surrounding the value of w(t), the

average energy per radiated PNGB. Davis and Shellard 15 (DS) claim that the PNGBs

should be radiated predominantly into low-frequency modes--wavelengths of order the

horizon size (w _,, t-1)--but Harari and Sikivie 16 (HS) argue for a 1/k spectrum, giving

w ~ ln(ft)/t. Rather than make a decision regarding these contentious issues, we will

parametrize our ignorance: the density of particles produced by the decay of global strings

is given by

~ 1- (3.4)

where the value of S is a result of this debate over the PNGB spectrum. For the DS

scenario, S ,,, ln(ftl) (note that the logarithm comes from #i ,,_ f21n(fd)lt, ,,_ f21n(ftl));

for the HS scenario, S ~ 1, since the ln(ft) in w (taken out of the integral since it is

much more slowly varying than the rest of the integrand) cancels with that from #. Since



T1 "-" A << f, the energy density of string-produced PNGBs is

A 4
_/¢,sh 2 = 2.3 x 10 -11 GeV-2S--

meT1
(3.5)

GeV 2 0.2_mpl g ,_-4"_

Aside from the factor of S, the abundance of string-produced PNGBs is comparable to that

produced by the misalignment mechanism (compare Ecln.(2.8)), and may complement this

mechanism or supplant it. Thus the string-produced density--and the resulting bound on

f and A--for the HS case is comparable to that for misalignment production.

For the DS scenario, we need to compute the quantity ln(ftl); using Eqn.(2.7) we find

ftl = (3f 2/2_A2)(5gl._2f/_mpl) -_/(_+2), or

h + In - In  og,1 ) (3.6)

In solving the equation for A, we can neglect the In A term provided me << mpl, valid

over most regimes of physical interest. Furthermore, for the axion with a __ 0.1 and

v - 3.7, the third term has a maximum value of about 2. Thus, we can approximate

ln(ftl) -_ 91 + [(v + 4)/(v + 2)]ln(f/mpl) and we can solve for limits on A due to cosmic

string decay:

____+.__ _ _.l_ 2

GeV - (5.1 x 101°)(2.4 x 101s)_-'_ (f/GeV) ,+2g.'[ +4a,+'_,,sh
[In(f/lOl ) - 16]91 + \ v+2 ]

for DS strings; remove the logarithmic factor in the denominator for the HS case. Despite

the presence of the logarithm, the dependence of A upon f is still approximately that of a

power law. If the DS analysis is correct, the PNGB abundance is increased by almost two

orders of magnitude and the limits on the parameter space are correspondingly tighter.

If the global symmetry group is not U(1), other defects will form, but similar results will

obtain as long as these defects also follow scaling solutions like Eqn.(3.1). For example, if

the symmetry breaking is SU(2) --* U(1), global monopoles will form. Each monopole has

an energy - 4_rf2R, where R is a characteristic distance betweeri monopoles. N_merical

simulations iv show that there should be O(1 - 10) global monopoles per Hubble volume,

R ,-_ t ,-_ H -1 , so the energ_r density in monopoles, p _ (f/t) 2, obeys the scaling solution.

Global textures is which form, for example, in the symmetry breaking 0(4) _ 0(3) also

obey such a solution, and the results above will obtain. In general, then, the defects arising

in global spontaneous symmetry breaking give rise to a PNGB density comparable to that

produced by the misalignment mechanism, up to factors of order ln(fQ) (which depend

on details of the spectrum and field configuration for the defect).
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The bulk of the energy density of global strings, monopoles, or textures is carried in

the gradient energy of the PNGB field itself (unlike gauge strings or monopoles, in which

the energy is carried in the core of the defect). Thus, even ignoring the defects themselves,

"Kibble" gradients in the PNGB field (which arise from the field taking on different random

values in initially causally disconnected regions) will also result in a population of PNGBs:

as the horizon grows to encompass previously uncorrelated regions, the PNGB field will

smooth itself, with a correlation length _ ,-_ 1/H ~ t. At temperatures T >_ T1, while the

PNGB is still effectively massless, the gradient energy density is

pgrad ~ 21--(V¢)2 -----_ f2 (V_) 2

(3.8)
~ 1f2 (e2>~ f2t_ .

2 (2

Once these long-wavelength fluctuations in ¢ enter the horizon, we can consider them as

a coherent state of ¢ particles. Thus, spatial gradients in the PNGB field will produce a

PNGB energy density again comparable to that produced by the misalignment mechanism.

The excluded regions of the A-f plane are shown in Fig. 2. In this figure and below we

only show the line for one set of model-dependent parameters, those appropriate for the

axiom Bear in mind that these lines will have a spread of 1-2 orders of magnitude (compare

Fig. 1). We show results for both DS and HS strings; we expect that any PNGBs produced

from either topological defects or spatial gradients should span this range. For the axion

itself, at A = AQCD -_ 100MeV, HS strings restrict f <_ 1012 GeV (not much different

than the misalignment production bound), and DS strings restrict f <_ 4 x 10 l° GeV (an

improvement of almost two orders of magnitude).

When the soft symmetry breaking that gives the PNGB its mass occurs at T _ A,

further topological defects may form, and we must insure that they are cosmologically

benign. In the U(1) case, initially the PNGB field varies smoothly from 0 to 2_r around

the string. When the symmetry is explicitly broken at T ~ A, the PNGB field is forced

to its minimum, but the variation over 2r cannot be removed. Thus, domain walls will

form, bounded by strings. If the PNGB potential has a unique (non-degenerate) minimum,

each string is bounded by a single wall, and the string-wall system rapidly chops itself up

and disappears. (This assumes the strings have not been inflated away.) If the PNGB

potential has multiple minima, however, or if the strings are inflated away before the walls

form, the domain walls would come to dominate the energy density of the universe and the

microwave background would be strongly anisotropic 19. Related phenomena may occur

in other scenarios as well. For example, if the initial defects axe global monopoles, the

second symmetry breaking will result in monopoles connected by strings, leading to rapid

monopole annihilation; in this case, the secondary defects are harmless.



IV. Thermal PNGB Production

So far, we have assumed that PNGBs were not in thermal equilibrium in the early

universe. That is, we have been assuming that microphysical scattering processes have

had small impact on the abundance of PNGBs. Now, we consider the case in which

PNGBs may couple to other constituents of the early universe and the conditions under

which thermal production may be important.

Since we wish to study constraints on PNGB properties that are as model-independent

as possible, we do not know its couplings a priori. In general, however, the coupling

strength will be suppressed by powers of (l/f). We will consider two possible cases:

(I) the PNGB is coupled to ordinary matter (e.g., quarks, leptons, and photons). (II) the

PNGB is coupled only to the matter sector associated with the scale A, that is, to particles

with masses _h = (A/AQcD)mf(G), where m is the mass of a quark or hadron, and f(G)

depends on the gauge group associated with the scale A. For example, a "techni-axion"

coupled only to technicolor particles would fall in category (II), with A the scale at which

the technicolor gauge group becomes strong (.-. the electroweak scale).

The interactions of the PNGB with photons and fermions are 1

£ = g¢-r._¢E. B + _ ig_--flOt,¢(fTt'o, sf) (4.1)
fermions Z?_2f

with coupling constants
al2_r

g¢-_'r = g'r- f (4.2)
ms

gcfl = gl--f- '

Here, gl and g_ are constants assumed to be of order one, although in some cases they

may vanish (e.g., for the hadronic axion, which does not couple to electrons at tree level,

g, = 0) or may be large (e.g., in Sikivie's omion model 2°, g'r "_ 105) • In general, the values

of these constants depend on the appropriate gauge-group charges, and to first order do

not depend on f or A. Note that we have assumed the coupling to fermions is purely

pseudoscalar, as is the case for axions, majorons, and familons in models without schizons.

We will assume (following ref. 21) that the PNGB is produced in reactions like ab _ ¢X

in the early universe, with species a, b, and X all in thermal equilibrium. The PNGB will be

produced in copious amounts by scattering processes if it Was ever in thermal equilibrium

i.e., if its rate of production, F, exceeds the expansion rate of the universe, H. In that

case, it will have an abundance given by the equilibrium value for relativistic bosons,

n_ Q _ 1.2T3/lr 2 corresponding to a present energy density

10 (4.3)
fl¢'TEh2 -- 130eV g.F
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whereg.F is the value of g. at the PNGB freeze-out temperature TF (defined by F(TF) =

H(TF)). Here we have assumed the PNGBs are relativistic at freeze-out, TF >> me; since

we will see below that TF --- A, this just corresponds to the usual assumption that f >> A.

Thus the crucial model-dependence enters into the calculation of F/H to decide if the

PNGB has been in thermal equilibrium. If the PNGB couples to normal matter (case

(I) above), the calculation is the same as that for the axion, and only the value of f--not

A--enters. The PNGB abundance is controlled by two processes. Before the quark-hadron

transition at T ,._ AQCD "_ rnN/5 (where mlv "2_1 GeV is the nucleon mass), the dominant

production mechanism is PNGB photo- or gluon production in the presence of a heavy, but

still relativistic, quark, Q (since the coupling strength is proportional to the fermion mass)

Q7 --4 Q¢ or QG --.* Q¢. After the quark-hadron transition, in the absence of free quarks,

the dominant production mechanism is nucleon-pion scattering or pion-PNGB conversion,

N¢.

In the case of PNGB coupling only to particles with masses scaled by A (case (II)

above), we will assume the saxne processes occuring for the "scaled" matter (and also

a transition from scaled quarks to scaled hadrons at T ,-. h): Q7 _ Q¢ and .N#

N¢, where all fermion masses have been scaled by A _ A/AQcD, e.g., rno. -- AmQ _-

(A/AQcD)mQ.

For PNGB photoproduction, the production rate F = nQ (alv]) ,v aT(ml/f) 2, and

H ,.., T2/rnpl in a radiation-dominated universe, so

r f 2
F ~ \gQT/ T >A. (4.4)

For pion-PNGB conversion, the nucleon abundance is Boltzmann-suppressed, nN _--

(mNT)3/2e--"N/T, and the cross-section <a]vl) ,-., T2/(fm,,) 2, yielding

r [_ rt._3/2_2 mpl _rnN/T

-_ " _,,,,N-t / YN f2m_ _
T < A. (4.5)

Due to the exponential decay of the nucleon abundance, the value of F/H will reach

a maximum value very soon after the quark-hadron transition at T --_ A. When the

PNGB couples to ordinary hadrons (case (I)), it is at that time in thermal equilibrium

((P/H)T~^ > 1) for

f <_ 6 x l0 sgg GeV (I). (4.6)

We will define x = mN/A; for normal matter couplings, x __ 5. For scaled cou-

plings (case (II)), x will differ; e.g., in an SU(N) technicolor model, the technicolor

scale A cx: AQCD/V_ and the mass of the lightest technibaryon rrtLT B 0( rngx/'N so

11



x "-- (XQCD/NQcD)N "_" 5N/3. In terms of x, the rate for scaled matter is maximized when

F (f)-2x-S/2e-Z (4.7)~ 5.2x 1020g A

where ,_ = rh/m = (A/AQcD)(N/3) for SU(N) technicolor models. In this case, the

requirement for thermal equilibrium becomes, defining y = x/5,

f <_ 6 x 10SgR GeV A1/2y-S14e-5(Y-1)/2 (II) (4.8)

or, for x = 5, N = 3,

f <_ 109(A/GeV)I/2gROeV (II). (4.9)

When these constraints are combined, the result is shown in Fig. 2. ft_h 2 is greater

than I for the region above the appropriate lines; the hatched marks denote the intersection

of the regions for which the PNGB is in thermal equilibrium and for which fit h2 > 1. For

the axion, which couples to normal matter, the constraint given by Eqn.(4.6) applies, and

requires that I <_ 6 x 10 8 GeV for the axion to be in thermal in equilibrium. In order for

thermal axions to make up a considerable fraction of the closure density, the value of f

would have to be quite small, f _< 5 x 10 4 GeV. Such a value of ] would result in a very

strongly coupled axion, already ruled out on astrophysical grounds (see section VI).

V. Unstable Particles

Thus far, we have assumed that the PNGB is stable (at least over times longer than the

age of the universe). If it decays with a lifetime T into products which are still relativistic

at the present time, the original PNGB density will have been redshifted away between

the time of decay and today:

_'_Decay Products(t0) = n!-_'_Stable
(5.1)

where R is the scale factor of the universe, R0 is its present value, n is such that R oc t n at

the time of decay, t .-_ r, _/St_ble is the density the species would have if it had not decayed,

and _DP is the present density of the decay particles.

If the particle decays when the universe is matter-dominated (7 >_ tEQ ---- 4.4 x

101°(_0h2)-2 sec ), n = 2/3, while if it decays in the radiation-dominated era (r _ tEQ),

n = 1/2. During the matter-dominated epoch, R(t)/Ro = 2.9 x lO-12(ftoh2)l/s(t/sec)2/s.

During the radiation-dominated era, R(t)/Ro = 2.4 x lO-l°g,1/12(t/sec)l/2. Expressing

this in more appropriate units,

nIR(7) { 2.0 x lO-28GeV2/a(_oh2)l/s_'2/a _" > tZQ; (5.2)" R00 -- 1.7 X 10 -22 GeV 1/2g_1/1271/2 "r <_ tEQ;
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which we parametrize as

n! R[r)" " -- A,T". (5.3)
R0

On dimensional grounds the PNGB decay rate should go as 1 F ,,_ m_/f 2, so the lifetime

_- = 1/F would be given by

T = gd_'_ = 6.6 X 101'ga sec 10 '2 GeV h (5.4)

where gd is a dimensionless coefficient of order one. (For comparison, the present age of

the universe to = f(12)Ho 1 = 4 x 1017 sec for _2 = 1, h = 1/2.) This gives

=Angdf A f/s(t0).f De(t0) . 5. -6n (5.5)

We can now insert our previous expressions for f/s, eqns. (2.8), (3.5), and (4.3), and

these can then be solved for A. For example, PNGBs produced via the misalignment or

defect mechanisms have a stable density given by equations (2.8) and (3.5):

v+3

f_,,mis = C_AfP; P - u + 2' (5.6)

where Cv is the coefficient of Af p in equations (2.8) or (3.5) and depends upon v, a, g.1,

etc. Using this in our results for the density of decay products gives

= A _ _ng5n+pA1--6n
_Dph 2 ,-xn_._vYdd _x (5.7)

or, solving for A,
1

A= (A_lC;lgd_f-sn-Pf2Dph2)l-6" (5.8)

In order to convert this expression, and similar ones for the production of PNGBs via

string decay and thermal mechanisms, into limits on the PNGB parameters, we need to

find a limit on _DP. Clearly, requiring _Dph 2 < 1 would be the most conservative bound.

However, if we make some assumptions about the nature of these decay products and the

growth of structure in the universe, we can put far stricter bounds upon _'_DP.

Observations of the cosmic microwave background 11 have determined that its devia-

tions from a perfect blackbody are remarkably small. Specifically, spectral distortions due

to the cosmological Sunyaev-Zel'dovich mechanism are below the level 0fcurrent measure-

ments. When a batch of photons are dumped into the universe (due to a process like

PNGB decay), the primary photons will Compton scatter off of free electrons, and the

resulting hot electrons will in turn Compton scatter the microwave background, moving

photons from the Rayleigh-Jeans to the Wien region. Clearly, this process is only relevant

when the photons are produced before the era of recombination: (7 < tree). The amount
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of distortion is quantified by the Compton y-parameter y _ (1/4)(Ap.t/p.t) , where Ap- t is

the excess photon density injected by the decays; COBE measurements 11 have found that

y < 3 x 10 -4. (Actually, at temperatures T > 104 K, the spectral distortion takes the form

of a non-zero chemical potential #, but the resulting bound is similar; we therefore focus

on y.) Once the excess photons are dumped into the universe, they evolve the same way as

the already-present background photons--y does not vary with time and is proportional

to the ratio of _'_DP to _'_7.

We parametrize the amount of photon energy dumped into the universe by PNGB

decay as ApT(r) = B.tfcp¢(r), with By the branching ratio for decay to photons, and fc the

efficiency of Compton rescattering at the time of PNGB decay (fc "" 1 for T >_ Tree, f¢ _- 0

for T <_ Tree). Using this for PNGBs with a lifetime r < tr_c - 5.6 x 1012(_0h2)-1/2 sec,

we find

1 B _'_DP h2-- < 3 x 10-4 (5.9)
~

or, since _'t_h 2 = 2.6 x 10 -s,
3 x I0-s

_Dph 2 < (5.10)
B.Jc

Although this limit on the CMB distortion via the Sunyaev-Zel'dovich effect is well-

understood, it is only effective (fc -_ 1) for particles decaying at redshifts 107 > ZD > Zrec

103 i.e., with lifetimes 106 sec _< r < tr_¢; photons injected at earlier times, t < 106 sec,

will thermalize and produce no distortions. This bound also relies upon assumptions about

the PNGB decay branching ratio to photons, B-_. Because of these constraints, this bound

actually gives us no new information, since the area of parameter space with the proper

PNGB lifetime does not overlap with the area that is newly allowed by eq. (5.10).

However, we can get a bound on _-_DP independent of the decay products, so long

as they are relativistic, by considering the formation of structure 22. We know that the

universe is matter-dominated today (as long as there are no exotic relativistic particles

which came to dominate at very recent epochs; this caveat includes the decay products of

the PNGBs, so we cannot put this bound upon _-_DP if r --- to), and that it must have been

matter-dominated for long enough to allow structure formation to occur, since only in a

matter-dominated epoch do density perturbations grow sufficiently rapidly, linearly with

the scale factor of the universe. The epoch of matter domination is given by

1 A- Zeq = R0/REQ = _-_NR/_'_rel (5.11)

where _2rel is the density of relativistic particles, £_rel = QT+_ + _-_DP, and _NR is the present

energy density of non-relativistic species. Thus, a significant _'_DP will decrease the redshift

of matter-radiation equality. Moreover, if _-_DP > QT+t', then the PNGBs dominated the
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universeat the time of their decay,and the universewent through two periods of matter-
domination: a first phasedominated by the PNGBs before they decayedinto relativistic

particles, and a secondphasedominated by the presentlynon-relativistic matter. At the

final epoch of matter-radiation equality, the comovingwavelengthof the horizon scaleis

(assumingthree light neutrino species)

= +
_'r+_/ "

If the non-relativistic matter today is cold dark matter, k_q1 approximately sets the scale

where the present fluctuation spectrum makes the transition from the primordial spectrum

on large scales, [_k[ 2 ,,_ k" for k -1 >> k/q I , to the processed spectrum on small scales, [$k[ 2 _

k n-4 for k -1 << k_ 1. Enlarging this scale by having an appreciable _'_DP will increase the

large scale power in i_p/p, for a fixed small-scale normalization (_p/p ,._ 1 at a scale of

8h -1 Mpc today, modulo biasing). The extra large scale power will in turn increase the

quadrupole anisotropy of the CMB, which has been constrained by the Relikt experiment 23

to be (AT/T)r,ns,_=2 < 1.5 x 10 -5 at the 95% confidence level. (This bound assumes

a scale-invariant (Harrison-Zel'dovich) primordial perturbation spectrum; the spectrum-

independent bound is roughly a factor of two higher.)

Recently, the qualitatively similar effects of a decaying 17keV neutrino on structure

formation 24 have been analyzed. For a primordial scale-invariant spect,rum, the quadrupole

bound limits its lifetime to be r _< 10 yr; we can translate this constraint into the require-

ment that 2_

]C_q1 _ 54h -1 Mpc. (5.13)

Using this in equation (5.12) with _NR _'_ 1, we then obtain a limit upon __DP:

_Dph 2 _ ll5h2_+vh 2 -- 5 X 10-3h 2, (5.14)

or, for h = 1/2,

_Dph 2 _ 1.3 × 10 -3. (5.15)

This corresponds roughly to the requirement that the universe become matter domi-

nated before or during the epoch of recombination. This constraint on __DP from structure

formation is shown in Fig. 3, for each of the production mechanisms examined above.

Decay processes make new areas of the parameter space "cosmologically allowed": as we

move away from r = to towards shorter and shorter lifetimes (i.e., earlier and earlier de-

cay times), the density of PNGB decay products decreases because it is redshifted away.

Note that the region of allowed parameter space for thermally-produced decaying PNGBs,

especially those that couple to normal matter, is extremely small; any change in the O(1)
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parameters that control their abundance is likely to make this region even smaller or

eliminate it entirely. Furthermore, we have throughout assumed that each limit applies

independently to each production mechanism. If, however, more than one mechanism is

effective, then the limits will be tighter, due to separate contributions to ft.

VI. Astrophysical Constraints

As we have already mentioned, the strength of the coupling of the PNGB to matter and

radiation does not depend on the energy scale A, but is merely proportional to 1/f. In fact,

any work that restricts the couplings of any pseudoscalar particle is directly applicable to

our general PNGBs. Astrophysical methods have been extremely valuable in constraining

the mass of one pseudoscalar, the axion, and we will generalize the most important of these

results here.

If a PNGB couples strongly enough to matter or radiation, then it will be produced

in copious amounts in astrophysical objects such as ordinary stars, red giant stars, and

supernovae-if it is also light enough that its production is not Boltzmann-suppressed (me

less than a few times the temperature of the object). If its interactions are still sufficiently

weak, however, it may be able to stream freely out of the star after its production. This

"cooling" mechanism--a misnomer, since the necessity of maintaining an equilibrium con-

figuration generally increases the temperature--may strongly affect the evolution of these

objects.

The strongest stellar-evolutionary bounds to pseudoscalar couplings come from the

examination of helium-burning (horzontal branch) stars. The coupling to photons is con-

strained by the lifetime of these stars, observed via the fraction of stars seen in that area of

a star cluster's color-magnitude diagram. In the presence of PNGB cooling via the PNGB

Primakoff process, 7 + (Z, e-) _ ¢ -4-(Z, e-), the length of this evolutionary stage will be

shortened; a value of

g¢7"_ _ 10-1° GeV -1 or f _ 10 7g7 GeV (6.1)

is necessary to keep the helium burning lifetime within an order of magnitude of obser-

vations. This constraint holds for PNGB masses me << T. If the PNGB mass is greater

than the core temperature for typical horizontal branch stars T _ 8.6keV, the PNGB

emission rate will be suppressed by roughly the factor exp(-m¢/T); this ignores any other

mass-dependence of the emission rates, which will be swamped by the Boltma.nn factor for

rn# >> T. (We have worked out the limits from Compton emission in horizontal branch

stars using the exact temperature-dependence of the rate from RMfelt and Starkman 26

and the constraints on f and A make only a small difference in fig. 4 below.) In general,
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emissionrates are proportional to g_.y._, so the constraint will become

g¢-y._ < 10-1°e 'n/'r'=kev GeV -I or f >_ 107e-m*/17"2k*vg.rGeV (6.1a)

valid for either me << 8.6 keV or me >> 8.6 keV.

The constraint on the coupling to electrons relies on the physics of helium ignition in

low-mass red giants. These stars have cores of helium nuclei and degenerate electrons.

Due to this degneracy the pressure does not increase as the temperature rises: when

it rises sufficiently for helium burning (via the triple-alpha process) a thermal runaway

occurs until the temperature is sufficient for degeneracy to be lifted. If PNGBs couple

sufficiently strongly to the degenerate electron gas, they will be able to cool the core

effeciently enough to prevent the ignition of helium--and this time the term "cooling" is

appropriate as the temperature is decreased due to the PNGB streaming. The PNGBs are

produced largely via the process of PNGB bremsstrahlung, e- + Ze ---. e- + Ze + ¢ with

an internal photon line. Calculations 26 show that this cooling will prevent helium-burning

for gee, > 3 x 10 -13. In order for the cooling to actually be effective, however, the PNGBs

cannot couple so strongly that they remain trapped in the core, keeping the temperature

high. This results in a "window" for which helium ignition will not occur:

3 x 10-13 _<gCee _<6 × 10-7; (6.2)

f > 109ge GeV. (6.3)

that is, helium ignition will occur normally for

f _< 103ge GeV or

In order for these bounds to hold, the mass of the PNGB must be much less than the

temperature. For heavy PNGBs, the cooling limit is modified as in equation (6.1a). In

the trapping regime, the primary effect of masses rn¢ >> T will be to slow the PNGBs

to non-relativistic velocities, decreasing the effective coupling a_ -" g_ee/4_r by a factor of

the average thermal velocity of the PNGBs, a_¢ = a(rnc,/T)l/_, thus reducing the coupling

constant gCee by a factor of (melT) 1/4. In order to interpolate between the limits of

m_ << T and m¢ >> T, we will modify this factor to (1 + rnc,/T)l/4. Thus our Helium

ignition limits become

f < 103(1 + mc,/8.6keV)'/4ge GeV or f _ 109e-'n*/17"2_'eVge GeV. (6.3a)

The strictest astrophysical bounds on pseudoscalar couplings arise from observations of

the duration of the neutrino pulse from supernova 1987a. If the nucleon coupling is strong

enough, PNGB emission will cool the supernova core so efficiently that the neutrino burst

duration will be shortened. If they couple too strongly, however, PNGBs will be trapped
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in a "PNGB sphere" (analagous to the neutrino-sphere) which will again lengthen the

neutrino burst sufficiently to coincide with observation. The dominant emission process in

the SN core is PNGB-Nucleon bremsstrahlung, NN ---+NN + ¢ with an internal pion line.

Numerical and analytical studies 26 have shown that the neutrino pulse will be unac-

ceptably shortened for

I0-I° <_gCNN _< 2 X 10-7

assuming equal coupling to neutrons and protons (g_nn

neutrino burst will occur normally for

(6.4)

= gCpp = g¢NN). Thus the

f _ 5 X 106gN GeV or f >_ 101°g N GeV. (6.5)

If we take account of masses rn_ >> Tcore "-" 30 MeV as above, these constraints become

approximately

f _< 5 x 106(1 -k m¢/30 MeV )l/4gN GeV or f _ 1010e-'n_16OMeVgN GeV. (6.5a)

Of course, none of these astrophysical bounds obtain unless the PNGB couples to

normal matter and electromagnetic radiation. If, for example, the PNGB couples only to

the photon, then only the bound on g¢_ from the helium burning lifetime will matter.

Similarly, in the case of the hadronic axion, which does not couple at tree level to the

electron (i.e., ge is very small) only the photon and nucleon bounds are relevent.

We show the astrophysical bounds in Fig. 4; for modest PNGB masses, the limits are

merely upon the parameter f that controls the PNGB couplings. For extremely heavy

PNGBs, however, the masses are comparable with the temperatures of the astrophysical

objects under consideration, and the limits are strongly curtailed.

For small values of f, the coupling of the PNGB to matter becomes strong enough that

it would show up in terrestrial accelerators. On the basis of nondetection of T _ ¢ +

and .7/¢ ---+¢ + _ events, we can limit I

f _> 103 GeV.

This bound holds for PNGB masses m s _< 1 MeV, above which the decay to electron-

positron pairs becomes important. Thus, the lower left of fig. 4 is also disallowed, despite

the regions allowed by trapping in helium-burning stars.

Other groups have also been investigating various astrophysical constraints on low-

mass PNGB properties. Gnedin and M6sz£ros 27 have examined the conversion of PNGBs

to radio photons in the magnetic field of a pulsar. Engel et al. 2s have used the nondetection

of a direct axion signal from SN87a by the Kamiokande II detector to exclude the range
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9.4x l0 sGeV <_f/gN _ 1.0 × 106 GeV, for me << 30 MeV. Ressel129 uses the nondetection

of a spectral axion line in the night sky resulting from present day decay of clustered axions

to exclude f/g._ _< 2 x 106 GeV, for PNGBs with decay times r _ to.

VII. Conclusions

We have considered the cosmological and astrophysical bounds on the parameter space

of broken global symmetry models with pseudo-Nambu-Goldstone bosons. As Figs. 1 and

2 indicate, as the soft breaking scale A is increased, the cosmological upper bound on

the spontaneous symmetry breaking scale f (due to the requirement that PNGBs have

less than closure density today) is generally reduced, in accordance with expectations.

However, this general trend is subverted when A becomes large enough that the PNGB

decays on a timescale significantly shorter than the age of the Universe. In that case, since

the relativistic PNGB decay products redshift away, the bounds are somewhat relaxed,

as Fig. 3 shows. Since the stellar emission of PNGBs depends only on the scale f, the

astrophysical lower limits on the axion scale fpQ (from red giants and SN1987a) can be for

the most part taken over to the general case. However, these bounds do have an indirect

dependence on the scale A through the Boltzmarm suppression factor for PNGB emission

e -m#/T, since me = A2/f. Thus, for large values of A, the astrophysical lower bounds

on f are also relaxed. From Fig. 5, which summarizes the astrophysical and cosmological

constraints on the parameters A and f, we see that there are essentially two allowed regions

of parameter space: (i) for A < 1 - 50 GeV (depending on the DS vs. HS debate) and

f > 10 l° GeV, there is a triangular region allowed for stable, light (m_ < 10 -5 eV) PNGBs;

here the upper bound on f due to the cosmic PNGB density increases as A is reduced.

(ii) For A > 10 - 1000 GeV, there is a second allowed region; as A is increased above this

limit, a widening window for f opens up. In this region, the PNGBs are heavy (m_ > 1

MeV) and unstable on a timescale short compared to the age of the Universe.
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FIGURES

FIG. 1. The excluded area of the A-f plane for non-thermal misalignment production

of stable PNGBs. The region above these lines has f/0h 2 > 1 and is excluded. The

line labeled "base" is the axionic case, with the following parameters: v = 3.7, a = 0.1,

g,j = 100, 8_ = rr/v_. The other lines differ from this case as marked in the legend. In

addition, lines of constant mass (m, -- A2/f) are shown for reference.

FIG. 2. The excluded area of the A-f plane for all production mechanisms of stable

PNGBs. For Misalignment and String production, the area above the ft÷h 2 = 1 lines

is excluded as in Fig. 1. For Thermal production, the excluded area is above the line

marked "In TE" and to the left of either the line marked "Thermal (Normal)" or "Thermal

(Scaled)," depending on the PNGB couplings (see text). In this figure and below, we have

set gN = 1.

FIG. 3. The excluded area of the A-f plane for decaying PNGBs, limited by constraints

of structure formation and CMB distortion, _lDph 2 <_ 1.3 X 10 -3. The lines are as in

Fig. 2, with the constraints bending over as the density redshifts away for PNGBs that

have decayed by the present time. In this figure, we have set gd = 1.

FIG. 4. The excluded area of the A-f plane due to astrophysical limits on PNGB cou-

plings. The regions below the curves are disallowed by the various astrophysical arguments

as marked. In this figure, we have set ge = gN = g'r = 1 (see text). Lines of constant

PNGB mass are shown for reference.

FIG. 5. The allowed areas of the A-f plane with all constraints from Figs. 3-4

combined. Solid lines axe constraints from misalignment and topological defects; dotted

lines are from thermal production; short dashed lines are from astrophysical constraints.

"PNGB dark matter" labels the region where f/6h 2 -,_ 1. Lines of constant PNGB mass

are shown for reference (long dashes).
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